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Abstract. In this paper, we introduce an approach to multi-camera,
multi-object detection that builds on low-level object localization with
the targeted use of high-level pedestrian detectors. Low-level detectors
often identify a small number of candidate locations, but suffer from false
positives. We introduce a method of pedestrian verification, which takes
advantage of geometric and scene information to (1) drastically reduce
the search space in both the spatial and scale domains, and (2) select
the camera(s) with the highest likelihood of providing accurate high-
level detection. The proposed framework is modular and can incorporate
a variety of existing detection methods. Compared to recent methods on
a benchmark dataset, our method improves detection performance by
2.4%, while processing more than twice as fast.

1 Introduction

Detection and tracking of multiple people from video has many important appli-
cations, including automated surveillance, crowd modeling, and sports analysis.
As the number of people in the scene increases, occlusions become a major
challenge. Compared with single-camera approaches (e.g., [1, 2]), by making use
of multiple, overlapping cameras, several recent methods [3–6] have shown ro-
bustness to occlusion in these types of crowded scenes with low-level detectors
that measure 3D occupancy. Typically these approaches require a trade-off be-
tween speed and accuracy. Of recently developed approaches to multi-camera,
multi-object (MCMO) detection, the most accurate involve expensive compu-
tation not suited to real-time application. The fastest methods tend to be less
accurate, providing only probability maps and delaying final localization to a
subsequent tracking phase.

In parallel, recent methods for pedestrian detection have shown promising
results for identifying individual people in images. At low resolutions and in the
presence of occlusion, however, even the best detectors perform poorly. Further,
while detector speed has improved significantly in recent years, these methods
are not designed to be used for multi-camera person detection in real-time at
typical resolutions using the common approach of sliding windows at multiple
scales and locations.
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Fig. 1. MCMO detectors based on low-level features are prone to “ghosts” (red lines),
or false positives, caused by shadows, occlusions, and projective effects among the
true positive detections (green lines). Our method incorporates high-level image-based
features from the camera(s) with the best view to verify actual people.

In this paper, we propose a hybrid approach that uses fast low-level detection
and targeted high-level verification, achieving high accuracy at real-time speed.
Our framework is modular, consisting of low, medium, and high-level detection
steps. The modularity of the design allows our framework to incorporate new
or pre-existing detector implementations as needed. With each successive step
more computationally expensive than the previous, the goal is to discard as many
hypotheses as possible using computationally inexpensive methods, and only use
high-level detectors to verify uncertain earlier hypotheses. Figure 1 illustrates
the idea. A low-level occupancy detector identifies 3D foreground voxels, shown
as gray cuboids. A mid-level aggregation step localizes objects, finding both true
detections (green lines) as well as false positives (red lines), known as ghosts.
For high-level pedestrian verification, image patches are extracted corresponding
to locations to be verified. The goal is for a pedestrian detector to accurately
evaluate the presence of a person in the image patch. However, in a multi-camera
environment, certain viewpoints may be preferable to others, in terms of the
expected accuracy of the detector.

Our main contribution is a multi-stage, coarse-to-fine framework for MCMO
detection, which includes a probabilistic model for selecting the optimal cam-
era(s) with respect to expected detection accuracy. The targeted use of high-level
verification keeps computational cost low while keeping accuracy high. We eval-
uate our method on a challenging benchmark dataset for MCMO detection and
tracking. Our results show the efficacy of our real-time approach, outperforming
recent methods in both detection accuracy and computational efficiency. Note
that while our focus in this paper is on MCMO detection, the method can easily
be incorporated into any end-to-end tracking system, directly benefiting tracking
performance.
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2 Related Work

Detecting people from images and video has been well-covered over many years [7].
Our focus is on multi-camera methods that incorporate low-level features for oc-
cupancy estimation.

Multi-Camera, Multi-Object Detection Most MCMO methods start with back-
ground subtraction (e.g., [8]) and then fuse extracted foreground silhouettes to a
common 3D coordinate system or ground plane. For example, Khan and Shah [9]
use homographies to warp foreground probability maps to a common reference
plane and detect feet locations, while Eshel and Moses [10] detect head tops by
incorporating intensity correlation in a similar homography-based framework.
Fleuret et al. [5] introduce a probabilistic framework to model occupancy over
a ground plane grid. Several methods [4, 11, 12] employ a 3D reconstruction
approach, where occupancy is calculated over a discrete 3D grid of voxels, in-
stead of just the 2D ground plane. These methods may detect people in the 3D
space [12] or project the volumetric reconstruction to the ground plane [4, 11].
Typically, exact localization is delayed to a later tracking phase based on, e.g.,
graph cuts [9] or dynamic programming [5] over temporal windows.

Reducing False Positive Detections Some recent MCMO detection methods have
explicitly incorporated schemes to address ghosts. Alahi et al. [3] model ground
plane occupancy estimation as a sparse optimization problem. A sparsity con-
straint is intended to rule out false positives during the detection phase. While
this method achieves high detection accuracy, the authors’ implementation takes
10 seconds per frame, making it unsuitable for real-time applications. Peng et
al. [6] incorporate a graphical model that explicitly encodes occlusion relation-
ships among discretized ground-plane locations. An iterative algorithm finds the
occupancy configuration that best explains the camera foreground images. The
method reduces the occurrence of ghost detections due to the occlusion rea-
soning, but takes 3 seconds per frame in the authors’ implementation. Other
methods incorporate simple rules to reduce ghosts, such as fixing a priori the
number of objects to be detected [13].

Our framework, which includes concepts common to MCMO methods, in-
corporates pedestrian verification directly into the detection stage rather than
a subsequent tracking step or with ad hoc rules. The verification step relies on
selecting the best viewpoints for image-based pedestrian detection. However,
compared to the sliding window approach commonly employed for single image
pedestrian detectors, our method drastically reduces the search space by only
evaluating selected image patches. Viewed in this light, the low-level detection
step provides geometric context similar to approaches (e.g., [14]) that use scene
context to reduce false positives. By combining efficient low-level detection, mid-
level aggregation, and targeted use of high-level verification, our framework is
capable of real-time multi-person detection in multi-camera networks.
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3 Base Detector

Fig. 2. Example input frames and extracted foreground silhouettes used to perform a
coarse 3D reconstruction for our low-level detector.

Our pedestrian verification approach could be used with any low- or mid-level
MCMO detector. In this section, we describe our base detector implementation.

3.1 Low-level Detection

As shown in Figure 2, our low-level detector performs change detection on C
cameras viewing the scene in order to create a coarse 3D reconstruction of the
visual hulls of moving objects. The scene volume is discretized into a voxel grid,
V = {v1, v2, . . . , vn}, where each voxel is identified as either background or
foreground by a straightforward voting scheme:

vi =

1 if
∑
k

π(vi, k) ≥ γ

0 otherwise
(1)

where π(vi, k) indicates whether voxel vi projects to foreground in camera k,
and γ is the threshold for the number of cameras in the network that must
agree for a positive voxel detection. To implement the voxel-image occupancy
function, π, other MCMO detectors (e.g., [4]) employ point sampling, where the
voxel center is projected to a single pixel in an image. For greater robustness
to noisy foreground extraction, we employ area sampling, where the 3D extent
of the voxel is projected to a bounding box in an image. Then, we define the
voxel-image occupancy function as:

π(vi, k) =

{
1 if ρ(vi, k) ≥ β
0 otherwise

(2)



Pedestrian Verification for Multi-Camera Detection 5

where ρ represents the proportion of pixels in the associated bounding box in
image k corresponding to foreground and β is a system-specific threshold that
can be tuned based on the noise level of the foreground segmentation process.
The voxel-image occupancy function with area sampling can be implemented
efficiently using the integral image technique [15] with the foreground mask
image.

3.2 Mid-level Aggregation

Fig. 3. Given foreground voxels (left), mean shift clustering (middle) localizes objects.
For the identified cluster centers, green squares are true positives and red circles are
false positives (ghosts). Note that the two ghosts are more pronounced than the correct
detection of the person at the top-left. (Right) An image from a camera in the network
shows the projected detections.

The next stage is aggregation of voxel detections to objects, illustrated in
Figure 3. Our approach relies on mean shift clustering (MSC) [16] for this step.
MSC is a non-parametric clustering approach that can find non-uniform or nar-
row modes in a distribution, which, in our case, correspond to potential object
locations in the scene. MSC is well-suited to the problem because no prior knowl-
edge about the number or location of objects is needed.

Let {xi} be the set of points in R3 corresponding to the centers of the identi-
fied foreground voxels. We define the kernel density estimator [16] for occupancy
at a point x as

f̂(x) ∝
∑
i

KH (x− xi) (3)

where KH(x) = |H|−1/2K
(
H−1/2x

)
. Here H is a d × d bandwidth matrix and

K is the unit flat kernel [17]

K(x) =

{
1 if ‖x‖∞ ≤ 1

0 otherwise
(4)

where ‖·‖∞ is the infinity norm, which implies an axis-aligned, box-shaped kernel
with dimensions controlled by bandwidth matrix, H, a diagonal matrix, where
each element along the diagonal is the squared bandwidth for a dimension of
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the box. For person detection, we choose H to approximate the dimension of
an upright person, i.e., h1 = h2 = h3/4. While MSC implementations typically
incorporate the smoothly differentiable Epanchnikov or Gaussian kernels, our
choice of an axis-aligned box kernel allows for faster computation and works
well in practice.

Each cluster is scored based on the proportion of foreground voxels within
the bandwidth to total bandwidth volume

sd(δm) =
f̂(δm)∏d
j=1 hj

(5)

where δm is the d-dimensional cluster mean (for our application, d = 3). The
cluster score can be thresholded to discard low-scoring detections, which often
correspond to ghosts. However, care must be taken to avoid rejecting valid de-
tections. Figure 3 shows an example where a valid detection scores lower than
two ghost detections. In the next section, we describe how pedestrian detection
can help distinguish between correct and incorrect detections.

4 Pedestrian Verification

In some systems [3, 5, 6], the output from low- and/or mid-level stages are
directly used as output detections. However, some of these may actually be
“ghosts,” or false positive detections due to shadows, reflections, or occlusions.
These errors become increasingly common as crowd density increases, and, in
complex scenes, significantly degrade overall system accuracy. Figure 3 shows
two examples of ghost detections in red. Our high-level detection stage, pedes-
trian verification, is aimed at identifying and eliminating these false detections
without filtering out correct detections.

4.1 Predicting Verification Accuracy

For a given cluster, represented by center location, δm, the 3D bounded region
corresponds to an image patch in each camera. For each candidate patch, we
compute the Expected Detection Accuracy (EDA), E[Q|Θ], where Q is a con-
tinuous random variable representing accuracy of a pedestrian detector under
the conditions encoded by the vector, Θ. Ideally, the model attributes would be
features that are efficient to compute following the low-level detection phase. A
recent survey [18] provides an evaluation of the performance of numerous detec-
tors as a function of occlusion and scale. The best performing detectors work well
for near-scale (at least 80 pixels high) examples, with rapid performance decrease
as pedestrian size decreases. Additionally, all of the detectors were sensitive to
occlusion; even partial occlusion (<35%) led to a log-average miss rate of 73%
for the best detector. To estimate the predictive power of a pedestrian detector
from a given viewpoint, our model incorporates occlusion, scale, and also verti-
cality, a measure of how upright a person appears from a particular viewpoint.
For a candidate location and corresponding image patches, these three features
can be computed using the projection of the 3D bounding boxes.
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4.2 Model Attributes

We define the bounding box for detection m projected into camera k as the
(rectangular) area of pixels, rkm. For the candidate detection, the up vector, Uk

m,
is the projection of a 3D vector pointing up along the positive Z-axis from the
candidate ground location, m, to the target’s estimated height, as viewed in
camera k.

Fig. 4. The occlusion value is estimated by calculating the overlap of the candidate
bounding box (dashed blue rectangle) with other, closer detections (gray boxes). For
the views shown, occlusion is 0.82, 0.00, and 0.56, respectively. (Lower is better.)

Occlusion In order to estimate an occlusion ratio for each detection based on the
other (potential) detections in the scene, we adapt the painter’s algorithm [19]
from computer graphics. The idea is to order the detections by proximity to the
camera center, and project a synthetic bounding box, rkj , into a 2D accumulator

for each detection that is closer to the camera than rkm. The occlusion ratio
measures the overlap of other (potential) detections with the candidate location:

so(m, k) =

∣∣∣(⋃j r
k
j

)
∩ rkm

∣∣∣
|rkm|

(6)

where |·| is the number of pixels in the box. Figure 4 shows an example of how
occlusion is calculated for three different views of one example detection from
the scene depicted in Figure 3.

Verticality Typically, pedestrian detectors are trained on examples containing
mostly upright (vertical) people. So, rather than incur the cost of training many
detectors or applying a warp to each image patch, we estimate how upright a
person at a given 3D location will appear from a particular view. Verticality is
computed as:

su(m, k) =

〈
Uk
m

‖Uk
m‖

,
Ikm
‖Ikm‖

〉
(7)

where Ikm is a vector pointing in the up direction (along the positive Y axis) in
the image and 〈·, ·〉 indicates the inner product.
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Height One of the features most correlated with pedestrian detection accuracy
is the pixel height of the pedestrian [18]. The height, in pixels, of a projected
object is simply the magnitude of the projected up vector, sh(m, k) = ‖Uk

m‖.

4.3 Model

Given a set of training examples, we compute, for each attribute, the expected
accuracy (true positive, true negative) using a binary logistic regression model.
That is, we compute E[Q | sx] for each attribute. To model the joint expectation
for a given image patch, we make the Naive Bayes assumption of conditional
independence between the features. This gives:

E[Q | Θ] ∝ E[Q | so] · E[Q | su] · E[Q | sh] (8)

Figure 5 shows some examples of the expected detection accuracy evaluated for
selected patches. In the next section, we show how this value can be used to
compare multiple image patches of the same object detection to select the best
view(s) for pedestrian verification in a real-time MCMO detection framework.

0.98 0.97 0.95 0.71 0.65

Fig. 5. The estimated detection accuracy (Equation 8) for selected image patches. The
first patch depicts an ideal case (unoccluded, upright, and near-field). The remaining
patches show examples of slight occlusion, smaller height, moderate occlusion, and
non-verticality, respectively.

5 Results

We evaluated our method on the APIDIS dataset1, which contains footage from
a basketball game captured by 7 calibrated, pseudo-synchronized cameras. The
dataset contains people of similar appearance and heavy occlusions, as well as
shadows and reflections on the court. In order to compare results with other

1 http://www.apidis.org/
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recent work [3–6], we followed the most common protocol of measuring perfor-
mance within the bounds of the left side of the basketball court, which is covered
by the most cameras. For quantitative evaluation, we used precision and recall,
where a true positive is a detection whose estimated location projects onto the
ground plane is within a person-width of the ground truth, a false positive is
a detection unmatched to an actual person, and a false negative is a missed
detection.

5.1 Implementation Details

We set the minimum number of cameras for voxel occupancy voting, γ, to 3, and
the foreground ratio threshold, β, to 0.25. For mean shift clustering, the band-
width was 45 × 45 × 180 cm. In the 3D occupancy grid, each voxel covered 10
cm3. For change detection, our method uses a GPU implementation of adaptive
background subtraction [20].

5.2 Pedestrian Detector Evaluation

Our method supports most image-based pedestrian detectors. We evaluated four
commonly-used, pre-trained detectors: HOG [21], VJ, based on the Viola-Jones
cascade classifier [15], and the Dollár et al. [22] detector, trained with the IN-
RIA dataset [21] (DOLLAR-INRIA) and the CalTech dataset [23] (DOLLAR-
CALTECH). The Viola-Jones detector is a cascade classifier trained specifically
on upper body examples [24], while the others are trained to identify full-body
pedestrians. Each of these pedestrian detectors provides a detection score, and
a threshold is commonly applied to obtain the final result. For a set of image
patches containing both positive (people) and negative (background) examples,
we computed the ROC curve across a range of thresholds for each detector and
used the Area Under the Curve (AUC) measure as a basis for comparison. HOG,
VJ, DOLLAR-INRIA, and DOLLAR-CALTECH achieved 0.65, 0.56, 0.60, and
0.67, respectively. Overall, DOLLAR-CALTECH performed the best, and, unless
otherwise specified, is the implementation we employed for subsequent experi-
ments. These values are much higher than would be expected from the typical
approach of pedestrian detection of sliding windows across multiple image scales
and locations. Beyond the efficiency concerns, this approach leads to many false
positives and false negatives. However, with a fixed location and scale (i.e., an
image patch corresponding to a particular 3D location), such detectors can be
quite accurate. This phenomenon was noted in a recent survey [18], which found
that classifier performance on image patches is only weakly correlated with de-
tection performance on full images.

5.3 Pedestrian Verification

To evaluate the effect of pedestrian verification on MCMO detection, we im-
plemented the base detector, and performed experiments applying pedestrian
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verification from multiple cameras. We tested two schemes: (1) using the top-
k cameras, and (2) selecting a variable number of cameras based on predicted
accuracy. To combine the results from multiple cameras, the k detector scores
are averaged, weighted by the expectation (Equation 8), prior to thresholding.
In the variable-camera scheme, all cameras with an EDA above .9 are included
in the ensemble.
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Fig. 6. Precision-recall curves for base detection with pedestrian verification with
DOLLAR-CALTECH (left) and HOG (right) using both fixed and variable number
of camera schemes.

Figure 6 shows precision-recall curves for various verification schemes on the
APIDIS dataset for two pedestrian detectors (HOG and DOLLAR-CALTECH).
While increasing from k = 0 to k = 2 cameras improves the overall performance,
adding a third or fourth camera does not. This result suggests that, for this
particular dataset, there are many instances where two of the available cameras
provide complementary suitable views of a particular location, but additional
viewpoints are neither helpful and perhaps contradictory. Overall, using a vari-
able number of cameras for each location performed best, although the effect is
more pronounced with the HOG detector than with DOLLAR-CALTECH. On
average, the variable scheme resulted in 2.56 image patches evaluated for each
candidate location.

5.4 Comparison with Other MCMO Methods

Table 1 compares the results of our method with several recently published
approaches on the APIDIS dataset. For each method, the precision, recall, F-
score, and frames-per-second (FPS) are shown. Excluding our method, the speed-
accuracy trade-off is evident across the related approaches. To the best of our
knowledge, our method using k = 2 verification cameras (base detector + verifi-
cation) outperforms all other reported detection results on the APIDIS dataset,
while performing at real-time speeds. Note that our detection method outper-
froms approaches that also incorporate tracking. Figure 7 shows some examples
from this experiment.



Pedestrian Verification for Multi-Camera Detection 11

Fig. 7. The top two frames show examples of our correctly identifying the presence
of multiple people (green rectangles). The bottom two frames show challenging cases
where the selected pedestrian detector failed for a given patch (red oval).

Method Precision Recall F-Score FPS

Base detector 0.84 0.86 0.85 13.13
Base detector + verification 0.93 0.85 0.89 10.40
Alahi [3] 0.92 0.82 0.87 0.1
Peng [6] 0.90 0.84 0.87 0.33
Posseger [4] (with tracking) 0.88 0.79 0.83 4.42
POM+KSP [5, 25] (with tracking) 0.80 0.73 0.76 0.03
POM [5] 0.51 0.63 0.56 80.70

Table 1. Comparison of our method and several recent approaches using precision and
recall rate on the APIDIS dataset. POM+KSP results are taken from [4] and POM
results are from [3].
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Precision, recall, and framerate (FPS) numbers for the other methods are
taken from results reported in the respective papers. Timing numbers, in partic-
ular, may not be directly comparable due to differences in hardware and other
implementation details. Our method was implemented in C++ with OpenCV
and deployed on a 2.5 GHz PC with 8 GB RAM and a Tesla C2075 GPU. For
the base detector with verification, processing time is roughly 73%, 6%, and 21%
for low-, medium-, and high-level detection, respectively.

6 Conclusions

We presented a framework for multi-camera, multi-object detection. Our multi-
stage approach incorporates fast low-level detection and more accurate high-level
pedestrian detection to verify uncertain hypotheses. The method is agnostic to
any specific implementation of the base detector or verification method. This hy-
brid approach was shown to be effective in experiments on a challenging dataset,
achieving state-of-the-art performance at real-time speeds. For the future, we
plan to investigate a cost-sensitive scheme to choose which techniques to de-
ploy in which situations to allow the speed-accuracy tradeoff to be explicitly
controlled, depending on the requirements of the system.
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